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Abstract

On-off intermittency refers to the special pattern of time series which
experience long time periods of calm behavior followed by short periods at
bursting. In particular, the Ricker Map, which is a model of the discrete
evolution of the expected population of one species at a given generation,
is implemented to generate on-off intermittency. The on-off intermittency
generated by the Ricker Map also exhibits the main characteristics found
in other dynamical systems. On-off intermittency in a locally connected
Ricker Map is the main focus here. The signal transfer between adja-
cent maps changes the stability condition compared with that of a single
map, which leads to different conditions for on-off intermittency in locally
coupled Ricker maps. The evolution and signal transfer in locally con-
nected maps is carefully studied using a simple continuous model which
contains similar structure and generates on-off intermittency. Through
this analysis, it is found that a specific map in a locally connected struc-
ture recieves positively correlated signals from the adjacent maps, which
generates more on-stages compared with a single map which has the same
parameters.

1 Introduction

A signal representing on-off intermittency exhibits two different states. One is
an ’off’ states, where the variable remain almost constant. The other is an ’on’
state which is a short time period of sudden bursting in the time series. This
on-off intermittency has attracted wide interest due to the potential that many
phenomena are related to on-off intermittency. Examples include the solar cycle
showing long time periods of calm interrupted by short bursting(Platt et al.
1993a), and earthquake occurrence(Bottiglieri & Godano 2007).

Suppose that there is a k-dimensional invariant manifold in an n-dimensional
dynamical system, where n > k. The invariant manifold has a chaotic attractor
whose stability can be controlled by a parameter, p. If p varies across a thresh-
old, the distance between the trajectory and the invariant manifold remains very
close to 0 for a long time and shows a sudden increase for a short duration. In
this context, on-off intermittency can be defined(Platt et al. 1993b). This argu-
ment is discussed by considering the skew product structure in the dynamical
system. Though the skew structure is not necessary for on-off intermittency,
it facilitates the analysis of on-off intermittency. Let us consider the following
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equations :

Ẋ = F (X,µ(t)), (1)

Ẏ = G(Y, ν0), and (2)

µ(t) =M(µ0, Y (t)), (3)

wherein the parameter µ for the evolution of X is controlled by Y . In this
system, if Y is responsible for the parameter µ traveling above and below a
threshold with time, one could observe on-off intermittency in the time series
for X. Consider an even simpler case of the logistic map for time evolution of
X represented as Xt+1 = rtXt(1 −Xt). Here, rt is the parameter determining
the stability of the invariant manifold Xt = 0 and hence rt = A0 + σξt, where
A0 is the average of rt and ξt is uniformly distributed noise between 0 and 1.
Depending on the choice of A0 and σ, we can generate an on-off intermittency
signal in X(Toniolo et al. 2002).

This simple setting for on-off intermittency reveals several important char-
acteristics of an on-off intermittency signal. Heagy et al. (1994) used uniformly
distributed noise for driving a parameter to investigate the statistics of the du-
ration of off-stages in on-off intermittency. They found that the probability
density function φ of the duration of off-stages is proportional to φ−

3
2 , which is

considered as the distinguishing characteristic of on-off intermittency relative to
other non-intermittent signals or other intermittency signals. They also found
numerically that the probability density function does not depend on the choice
of the driving parameters, which hints of the possibility that the −3/2-law could
be general for on-off intermittency generated by various dynamical structures.
Toniolo et al. (2002) sought out various characteristics of on-off intermittency
using power spectrum analysis and found a clear negative slope in a log-log scale
plot. These results can be used to identify the on-off intermittency in the time
series obtained from observation or experiments. For example, the time series of
the earth quake occurence shows the −3/2-law in the probability density func-
tion of the duration of off-stages (Bottiglieri & Godano 2007). Even if we do
not have an exact model for earthquake justifiably, we can speculate that the
occurrence of earthquakes shows on-off intermittency.

This previous work opens the possibility that we can determine whether or
not a signal observed exhibits on-off intermittency. However, the previous work
used a single map to investigate the characteristics of on-off intermittency. It is
not realistic that a single dynamical system is totally isolated from other nearby
systems. For example, convection cells located in deep clouds can interact with
neighboring cells, or the population of insects or fish at one location can be
related to those at another location through migration or sharing of resources
given by same environment. Considering the possible coupling with neighbors
in realistic situations, it is worthwhile to investigate a simple form of interaction
between dynamical systems under conditions for on-off intermittency.

In this report, we will use the Ricker Map, which is a generalized version
of the logistic map for population dynamics. First, we will check whether the
Ricker Map also contains on-off intermittency in trajectories that travel near
an invariant manifold. We will also examine whether there is consistency in the
characteristics of on-off intermittency that have been identified using different
maps. Second, simple local coupling will be defined for the investigation of the
role of the interaction. Based on the definition of local coupling, we will try to
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find out how the signals in the local coupling structure evolve and transfer to
adjacent maps. Numerical simulation and a possible theoretical approach will
be provided.

2 Single Ricker Map

The Ricker Map (Ricker 1954) was first suggested by Bill Ricker to study the
expected population of one specific species at a given generation. The Ricker
Map is represented by a single discrete dynamical model in which the popula-
tion at the generation t + 1 is determined by the previous generation t with a
prescribed growth rate and restriction given by environmental conditions like
food, habitat and water. The Ricker Map is represented as

Nt+1 = Nte
r(1−Nt

K ), (4)

where Nt is the population at t and r is the growth rate. Th carrying capacity
K represents the population size of the species that the environment can hold
depending on resources like food or water. For simplicity in this study, K is
assumed to be equal to be 1.0 and hence (4) becomes

Nt+1 = Nte
r(1−Nt) (5)
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Figure 1: Bifurcation diagram for Ricker Map. If r < 2.0, Nt converges to 1.0.
But if r > 2.0, Nt oscillates among several values, which demonstrates period-
doubling bifurcation. At r = 2.0, one solution divides into two branches. Near
r = 2.5, each solution bifurcates again and hence Nt travels around four values.
As r increases, the periodic-doubling bifurcations continue and the number of
solutions grows dramatically.

This discrete map shows different sequences of Nt depending on the value
of r. If r is less than 2.0, Nt converges to 1.0. But if r is greater than 2.0, Nt

starts to oscillate among several values. This situation is well displayed by a
bifurcation diagram. Figure 1 shows the steady state solutions as a function of
the value of r. When r is equal to 2.0, one solution divides into two branches
which is called a period-doubling bifurcation. Then near r = 2.5, each solution
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bifurcates again giving four solutions. As r increases further then, the period-
doubling bifurcations continue and the number of solutions grows dramatically,
which is shown in black in figure 1. Based on the bifurcation diagram, we can
see that Nt = 1.0 is the invariant manifold whose stability is determined by r.
If r is larger than 2.0, Nt = 1.0 becomes unstable. On-off intermittency can
be generated when r moves across 2.0 in time. Under the assumption that r
is independent of Nt (the skew product structure), we have to choose a way of
determining r at each time step. Heagy et al. (1994) and Toniolo et al. (2002)’s
works indicate that the method of determining r does not influence on-off inter-
mittency. However, without specific physical constraints, we choose Gaussian
white noise as our driving method with appeal to the central limit theorem. In
realistic cases, r can be affected by various physical variables. The dimension
of the dynamical system for r could be large. Therefore, many physical or en-
vironmental processes that evolve over a range of frequencies influence the time
dependence of r. We can, therefore, think of the change of r in the context of
Brownian motion as r = r0 + σξ, where r0 is the mean of r, ξ the Gaussian
white noise whose mean and standard deviation are 0 and 1.0, respectively, and
σ the intensity of noise. Hence the parameter r is controlled by two variables,
r0 and σ. We can ask if on-off intermittency is always seen in |Nt − 1.0| in the
parameter space, (r0, σ), when r travels across 2.0.

Figure 2 shows time series with different r0 and σ. For (a) and (c), we choose
r0 = 2.1, so that r0 is in the parameter region where Nt = 1.0 is unstable.
Then r is driven by Gaussian white noise whose amplitude is σ. In (a), σ is
chosen to be 0.2, which does not produce an intermittent signal even though
r moves through 2.0. The signal shown in figure 2(a) is similar to a noisy
chaotic signal. When σ is increased to 0.4 in (c), the signal shows clear bursting
after long calm period, which can be recognized as on-off intermittency. On-off
intermittency is generated through a particular perturbation of r. Figure 2(b)
shows an intermittent signal where r = 7.0 is chosen to be constant, but it is not
on-off intermittency. On-off intermittency is generated when the perturbation
of r changes the stability of the fixed point at each time step. The distinction
between the intermittency shown in (b) and the on-off intermittency shown
in (c) cannot be understood without information about r. We need further
analyses to make a clear distinction.

According to figure 2, on-off intermittency emerges only for certain choices
of r0 and σ. Metta et al. (2010) suggested a method to find on-off intermittency
by first computing the stability curve in a parameter space which consists of
the mean value of the parameter and the intensity of the noise. They then used
kurtosis to locate on-off intermittency in the parameter space. Larger values of
kurtosis represent a signal that can be considered as on-off intermittency. We
can follow the procedure here. First, we can think of the stability of Nt as a
function of r0 and σ. A necessary condition for on-off intermittency is that r0
and σ must be chosen to lie inside the unstable region in the parameter space,
(r0, σ). Unless it is unstable, the time series converges to a fixed point so that
the emergence of bursting is unlikely.

Consider the linearized equation near the fixed point, Nt = 1.0, for which
we can let Nt = ηt + 1. After ignoring higher order terms, this gives

|ηt+1| = |1− r0 − σξt||ηt|. (6)
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Figure 2: Sample time series of the driven variable Nt in the different r0 and σ.
(a) r0 = 2.1, σ = 0.2; (b) r0 = 7.0, σ = 0.0; (c) r0 = 2.1, σ = 0.4. (a) shows
noisy chaotic signal, which is non-intermittent signal. (b) is a kind of intermit-
tent signal but not on-off intermittency. (c) shows an on-off intermittency.

From this relationship between Nt+1 and Nt, we can determine |ηt| as

|ηt| =
t−1∏
k=0

|1− r0 − σξk||η0|. (7)

Taking the logarithm of both sides, the equation becomes

log|ηt| =
t−1∑
k=1

log|1− r0 − σξk|+ log|η0|

= t < log|1− r0 − σξk| > +log|η0|. (8)

Here < · > represents the ensemble average and < log|1 − r0 − σξk| > can be
considered as the exponent of |ηt|. Therefore, the stability curve satisfies

< log|1− r0 − σξk| > = 0. (9)

The calculation of the ensemble average can be accomplished using the known
probability density function for ξk.

< log|1− r0 − σξk| >=
∫ ∞

−∞
ρ(z)log|1− r0 − σz|dz, (10)

where ρ(z) is the normal distribution whose mean and standard deviation are
0.0 and 1.0, respectively.

Figure 3(a) shows the stability curve in (r0, σ) parameter space, calculated
using the equation (10). In the region bounded by the r0 axis and the σ axis
and the stability curve, all time series converge to the fixed point 1.0. Inside
this region, it is impossible to find on-off intermittency. On-off intermittency
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Figure 3: Stability curve and kurtosis at each r0 and σ. (a) The stability curve
is calculated using < log|1− r0 − σξk| > = 0.0. (b) At each r0 and σ, kurtosis
is calculated after generating the time series.

only exists outside of this region. To find the on-off intermittency outside of this
stable region, kurtosis is a useful measure. Kurtosis is the statistical quantity
used to detect infrequent extreme deviations. Higher kurtosis in this parameter
space representative of on-off intermittency. In figure 3(b), we can see higher
values of kurtosis in the area very close to stability curve. As suggested by
previous research (Metta et al. 2010), there is on-off intermittency in the Ricker
Map of the unstable region in parameter space and very near the stability curve.

In the Ricker Map, we have information about the parameters, r0 and σ,
which can lead to an on-off intermittency signal. Without information concern-
ing r0 and σ, however, we could be led by only looking at the signal itself. We
need to seek other characteristics of on-off intermittency. First, we can examine
the power spectrum of the time series generated by the Ricker Map. In figure
2, we used three time series including one on-off intermittency case. We can
compare the power spectrum of these three cases. Figure 4 shows the power
spectrum of the three cases shown in figure 2. Case (a) shows the power spec-
trum of the non-intermittency case which looks like a noisy chaotic time series.
For lower frequencies, the slope is almost flat, which is analogous to white noise.
We can see slope at higher frequencies. Case (b) has intermittency signals but
not on-off intermittency. Instead of a slope, the power is intensified in higher
frequencies. Case(c) shows on-off intermittency. Unlike the previous cases, a
clear negative slope is shown from low frequencies to high frequencies. The
slope shown in (c) can be considered as one of main features contained of on-off
intermittency.

Another characteristic we have to consider is the duration of off-stages in
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Figure 4: Power spectrum of three different cases. (a) r0 = 2.1,σ = 0.2; (b)
r0 = 7.0,σ = 0.0; (c) r0 = 2.1,σ = 0.4

the time series. The duration of an off stage is the time step between two
consecutive on stages. The off stage can be defined in terms of the signal being
below a certain value. Here, we will use 0.001 for the criterion for the off stage.
Using the logistic map and a random process uniformly distributed between
0 and 1 for driving parameter, Heagy et al. (1994) proved that the probability

density function (PDF) of Tφ (the duration of off-stages) is proportional to T
− 3

2

φ .
They also showed numerically that the −3/2 law is maintained regardless of the
details of the driving method. These could be another random process or any
chaotic map. We can expect the same characteristics of on-off intermittency to
occur in the Ricker Map. Figure 5 shows the probability density function of
the duration of off-stages for three cases. The red line is the PDF for on-off
intermittency, which is very close to a -3/2 slope line in log-log scale plot. The
green line represents the PDF for the noisy chaotic case when r0 = 2.1 and
σ = 0.2. Here, the slope of the probability density function is quite different
from -3/2. The last line is for another type of intermittency when r0 = 7.0 and
σ = 0.0, which is also distinct from on-off intermittency.

The −3/2 law can be used as a characteristic to determine whether a time
series exhibits on-off intermittency. But it must be understood that this is not
proven mathematically in general. To determine whether a given time series
shows on-off intermittency, we have to use multiple analyses including power
spectra and the PDF of the duration of off stages. Finally, if possible, we will
try to construct a dynamical system for the time series and find the parameters
necessary for the generation of on-off intermittency.

A single Ricker Map with Gaussian white noise generates on-off intermit-
tency near the fixed point Nt = 1.0. The power spectrum and probability
density function of the duration of off-stages of the Ricker Map are consistent
with the results at several previous studies. The consistencies shown in on-off
intermittency of the Ricker Map make it possible for us to use the Ricker Map
for further analysis of on-off intermittency. As noted in the introduction, one
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Figure 5: Probability density function of the duration of off-stages in log-log
scales. On-off intermittency case is compared with two other cases. One of
them is noisy chaotic time weries with r0 = 2.1 and σ = 0.2. The other is other
intermittency case when r0 = 7.0 and σ = 0.0.

particular system is not totally isolated from other similar systems. More specif-
ically, a group of species whose population is governed by the Ricker Map can
interact with other nearby groups of same species. The interaction can occur in
various forms. One example is the migration from one group to nearby groups.
Another example is sharing of environmental resources. Therefore, our next
step is to examine how on-off intermittency changes through in a single map
under the possible interactions with adjacent maps.

3 Locally Connected Ricker Maps

Now we examine the dynamics of connected maps. For example, one group of
salmon can interact with other groups via migration and sharing food or re-
sources. Depending on the system, the form of the interaction may be different.
As a starting point, the interaction can be assumed to be linear and local, which
implies that maps are diffusively coupled. In a Ricker Map, local coupling can
be understood as the dynamics of a metapopulation composed of many different
populations that share individuals between different sites.

Lets consider the case of K locally connected maps all of which have the
same parameter values,

Nk
t+1 = (1− ε)f(Nk

t ; r
k
t ) +

ε

2
[f(Nk−1

t ; rk−1
t ) + f(Nk+1

t ; rk+1
t )], (11)

where k = 1, 2, ...,K, and

f(Nk
t ; r

k
t ) = Nk

t exp[r
k
t (1−Nk

t )] (12)
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where rkt = r0+σW
k
t , andW

k
t is Gaussian white noise whose mean and standard

deviation are 0 and 1, respectively. Also W k
t is δ-correlated in space and time

so that < W k
t W

m
s > = δkmδts. The coupling coefficient ε determines the

intensity of the local coupling. We also assume periodic boundary conditions
which means that the Kth map is coupled to the (K − 1)

th
map and 1st map.

The periodic boundary conditions mimic an infinite array of population sites.
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Figure 6: Signal pattern in a locally coupled map. r0 = 2; 1, σ = 0.4, and
ε = 0.01 are used for the map.

Figure 6 shows an example of the local coupling of many maps, r0 = 2.1,
σ = 0.4, and ε = 0.01. “On stages ”, seen as bright color dots, appear from time
to time after long period of “off stages ”. The on-stages in one specific map
seem to be related to that of the adjacent maps. Sometimes, the on-stage in
one map seems to trigger in adjacent maps. We see a cluster of on-stages in the
same space and time domain. This might be due to transfer between adjacent
maps. Signal transfer can shape the on-off intermittency in the case of a local
coupling.

A simple question is whether or not the local coupling is helpful in generating
more on-stages. Figure 7 shows three examples of time series of one specific map
among locally coupled maps. The coupling coefficient ε is different for the three
examples. The first case has no coupling, the second has ε = 0.01 and the third
one has ε = 0.1. According to the figure, the number of on stages generated
during a fixed time increases as ε increases. Even though ε is quite small, the
effect from this weak coupling is substantial. Figure 7 demonstrates that even
a weak coupling can change the statistics of on-off stages dramatically.

In a single map, the most important issue is where on-off intermittency exists
in the parameter space; it exists in the unstable region, but very close to the
stability curve. Finding where on-off intermittency occurs in a parameter space
must begin with the determination of the stability curve. For simplicity, we start
with a 3-map local coupling. Even though only three maps are locally connected,
we expect to find general characteristics of infinite coupled maps due to locality
and periodic boundary conditions. Generally, finding the stability condition for
a point in a parameter space is equivalent to finding the Lyapunov exponent.
If the exponent is positive, it means the system is unstable. The stability curve

268



0 500 1000 1500 2000 2500 3000
0

1

2

N
t

ε = 0.0

0 500 1000 1500 2000 2500 3000
0

1

2

N
t

ε=0.01

0 500 1000 1500 2000 2500 3000
0

1

2

Time Step

N
t

ε=0.1

Figure 7: Time series of one specific map in locally coupled maps. Here, r0 = 2.1
and σ = 0.4. The only difference among three examples is the magnitude of ε,
the coupling coefficient.

is given by the set of the points where Lyapunov exponent is zero. To find
the Lyapunov exponent, we have to linearize equation (8) near the fixed point
Nt = 1.0. If K = 3, our linearized equation is

Zt+1 = YtZt, (13)

where Zt = Nt − 1.0 and

Yt =

 (1− ε)(1− r0 − σξ1)
ε
2 (1− r0 − σξ2)

ε
2 (1− r0 − σξ3)

ε
2 (1− r0 − σξ1) (1− ε)(1− r0 − σξ2)

ε
2 (1− r0 − σξ3)

ε
2 (1− r0 − σξ1)

ε
2 (1− r0 − σξ2) (1− ε)(1− r0 − σξ3)

 .
Therefore, Zt+1 is

Zt+1 =

(
t∏

s=0

Ys

)
Z0. (14)

Here, the Lyapunov exponent λ can be found using

λ = lim
t→∞

1

t
ln ||

t∏
s=0

Ys||. (15)

It is known that a limit for the calculation of λ exists even though the
matrix is randomly determined at each time step. To determine the change of
the Lyapunov exponent with local coupling, we fix r0 = 2.1 and then vary σ
and ε . Figure 8 shows the Lyapunov exponent in the parameter space (σ, ε)
with fixed r0 = 2.1. For a single map, with σ larger than 0.42, the Ricker Map
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Figure 8: Lyapunov exponent in the parameter space (σ, ε) with fixed r0 = 2.1.

becomes stable. In figure 8 we find σ = 0.42 when ε = 0.0. Interestingly, a
sudden change of stability with local coupling is formed for 0.42 < σ < 0.53
where the stability condition suddenly changes with coupling. Even a weak
coupling makes the system unstable. If σ is large enough, local coupling cannot
change the stability. Lets consider a scenario relevant for this analysis. We
think of the population of salmon governed by the Ricker Map. The growth
rate r of one generation of salmon can be assumed to fluctuate due to a change
in environmental resources at every time step. If the standard deviation of the
fluctuation exceeds a certain threshold, for example σ = 0.42, the population of
the salmon always maintains the fixed value even after many generations. Under
the same environmental conditions, which implies that the mean and standard
deviation of r are same, we can think of a case where salmon in a group start
to migrate to nearby population groups. In this case, we expect a sudden sharp
increase of the salmon population at some time step.

Figure 8 shows the increase of Lyapunov exponent with ε within some range
of σ. If we remember that on-off intermittency is seen near the stability curve
in the parameter space, we surmise that on-off intermittency formed in a single
map could disappear with strong local coupling. First, we can check the power
spectrum of the time series at each coupling coefficient. We know that a clear
negative slope is found for on-off intermittency in the single map analysis. Figure
9 shows the power spectra for several values of ε. These power spectra are
made by averaging the signals in 213 maps after 214 time steps. For the weak
couplings, when ε is 0.1 or 0.2, the clear negative slope is shown in power
spectrum. However, when ε = 0.5 or ε = 0.8, flatness over low frequencies
appear, which also appeared in the noisy chaotic signal in the single map when
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r0 = 2.1 and σ = 0.2.
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Figure 9: Power Spectra for several local couplings.

We have seen the change of stability and the statistics of on and off stages
due to local coupling. This change could be made more evident if we trace
how a certain on-stage is generated and how it interacts with other maps. For
this job, we create 213 maps locally coupled and run the system for 214 time
steps. A substantial number of on-stages can be sampled in the time and space
domain. In this sampling, we also collect adjacent points centered on the on-
stage in both the spatial and time domains. Figure 10 shows the average map
over samples collected as described above. For this figure, we chose 20 adjacent
maps and 40 time steps for sampling. The time step is from lag -20 to lag 20
centered on the on-stage. From this figure, we see how the signal in locally
coupled maps evolves. Before the on-signal is generated, we see an increase of
the signal of the map together with the adjacent maps. The on signal is not
generated alone randomly. It can be correlated with adjacent maps so that the
signals all increases together for the on-signals. This argument is refined further
in the next section. After an on-signal is generated, the signal decays and, at
the same time, diffuses away to adjacent maps. It is seen as a sharp V-shape,
which may be related to the V-shape propagation of on-signals in the spatial
and time domains from time to time.

The characteristics of on-off intermittency shown in this local coupling seems
to be determined by how the signal is transfered and evolves with adjacent maps.
We can conclude from numerical analysis that more on-signals are generated
through the coupling. In a certain range of σ, the coupling even changes the
stability of the map. This motivates a theoretical approach to explain how the
signal of a specific map evolves with that of adjacent maps.

4 Signal Transferring in locally connected maps

Compared with a single Ricker Map, without rigorous quantification, we sur-
mise that signals are coming to each map from adjacent maps, which may lead

271



map

tim
e 

la
g

ε=0.1

 

 

−10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 10: Average map over the area centered on on-stages in the spatial and
time domains.

to more on stages in time series of locally coupled maps. However, without
aid from numerical results, we can think of two different effects due to local
coupling. As suggested above, more signals will come into each map from adja-
cent maps. Alternatively, the growing signal in each map could be diffused and
transfered to adjacent maps, which could lengthen the duration of the off stage.
Finding which one is more dominant or how to determine which case is preferred
requires more precise analysis. However, these two possible effects only treat
signal transferring. As we know, each map has its own system for increasing or
decreasing signals, which might be a broader sort of reaction. Therefore, the
combination of diffusion and reaction, which are randomly controlled, influences
the signal pattern in the locally coupled maps.

On-off intermittency is characterized by long periods of calm stages and
short periods of bursting. During a long period time of the off-stage, the signal,
which is the distance from the fixed point, is negligibly small. Even though
we can easily ignore the tiny signals during off-stages, the occurrence of the
on-signal is completely governed by how the signal evolves during the off-stage,
which implies that the generation of the on-stage is completely explained by
the linearized equation near the fixed point or more generally the invariant
manifold. The role of nonlinearity is to prevent further increase of the signal
after the emergence of the on-signal and to make the signal return to the off
stage. Heagy et al. (1994) proved the −3/2 law for the PDF of the duration of off
stages using a linearized equation near the fixed point, which was possible due
to the fact that the generation of the on-signal is governed by the signal growth
during the off stage. Metta et al. (2010) explained the signal synchronization
shown in two-map coupling based on the signal matching during the off stage.
So, how the signal grows during the off period is the key process for explaining
the statistics of the on-stages. Returning to the locally coupled maps, the main
question is how signals grow and exchange information during off stages in
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locally coupled maps. From this perspective, linearized equations near the fixed
point during a particular off stage will be considered.

Despite the use of linearized equations, discrete maps are difficult to analyze
analytically. A continuous model is more useful and can be constructed using
stochastic calculus. Therefore, we use a time-continuous model qualitatively
similar to the Ricker map to try to generate on-off intermittency. The model is
a canonical cubic ODE,

dx

dt
= µx− x3, (16)

whose stability near x = 0 is determined by the sign of µ; if µ is positive
(negative), equation (16) is unstable (stable). The similarity to the Ricker map
is seen as

dx

dt
= − d

dx
V = − d

dx
(−1

2
µx2 +

1

4
x4), (17)

where the shape of V can tell us the stability of x = 0 and where stable solutions
exist. Figure 11 shows the shape of V depending on the sign of µ near x =
0. When µ changes from negative to positive, the stable solution near x =
0 becomes unstable and two stable solutions near x = ±√

µ appear. This
situation is analogous to a period-doubling bifurcation when r becomes slightly
larger than 2 in the Ricker map. Therefore, if µ is perturbed near 0, on-off
intermittency may be generated. Due to this qualitative similarity, we can use
this continuous model to investigate on-off intermittency in locally connected
maps.
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2
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Figure 11: Shapes of V depending on the sign of µ

First, it is necessary to analyze on-off intermittency of the single map in this
continuous model. Near x = 0, the linearized equation is

dx

dt
= µx, (18)
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where µ is perturbed by some external process. Here, we simply choose Gaussian
white noise to perturb µ as µ = µ0+σξ, where ξ and σ represent Gaussian white
noise and intensity of the noise respectively. Moreover Gaussian white noise ξ
can be written as time derivative of a Wiener process dW/dt. Equation (18)
becomes and

dx = µ0xdt+ σxdW. (19)

Among other systems, this equation describes the evolution of option prices,
where it is called the Black-Scholes model. Ito-calculus provides us with an
exact solution, which is

x = exp

[
(µ0 −

1

2
σ2)t+ σW

]
. (20)

We can determine the stability condition from the solution as

< (µ0 −
1

2
σ2)t+ σW > = (µ0 −

1

2
σ2)t > 0.

Therefore, the stability curve in the (µ0, σ) domain is µ = 1
2σ

2. We expect
on-off intermittency. Figure 12 shows a example of on-off intermittency near
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Figure 12: On-off intermittency when µ0 = 0.33 and σ = 0.8

stability curve in this continuous model.
We now construct the locally coupled maps. We focus on signal evolution

and transfer during a certain off-stage so that the linearized equation near x = 0
will be considered in local coupling. Our equation is

dxk
dt

= µ0xk + σξkxK + εµ0

(
xk+1 + xk−1

2
− xk

)
+ εσ

(
ξk+1xk+1 + ξk−1xk−1

2
− ξkxk

)
, (21)
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where k and ε are the index of each map and the coupling coefficient, respec-
tively. We can let xk = yke

µ0t to remove the first term in the equation (21),
thereby giving

dyk
dt

= εµ0

(
yk+1 + yk−1

2
− yk

)
+ σξkxk + εσ

(
ξk+1yk+1 + ξk−1yk−1

2
− ξkyk

)
,

(22)

which can be written in matrix form as

dY

dt
= εµ0AY + σ(I + εA)Y ξ, (23)

where

A =


−1 1

2 0 0 · · · 1
2

1
2 −1 1

2 0 · · · 0
0 1

2 −1 1
2 · · · 0

...
. . .

...
1
2 · · · 1

2 −1


and

Y = (y1, y2, ......, yn)
T ,

Y ξ = (y1ξ1, y2ξ2, ......., ynξn)
T .

Here, A describes the structure of the periodic connection and is a symmetric
matrix. We can easily construct the integral form of Y (t), which is written as

Y (t) = exp(εµ0At)Y (0) + σ(I + εA)

∫ t

0

exp(εµ0A(t− t′))Y dW, (24)

where

Y dW = (y1W1, y2W2, ........, ynWn),

and again W represents Wiener process. Because A is symmetric, it can be
diagonalized and represented as A = QDQT where D is the diagonal matrix
whose diagonal terms are the eigenvalues of A. The above integral equation
becomes

Y (t) = Qexp(εµ0Dt)Q
TY (0) + σQ(I + εD)

∫ t

0

exp[εµ0D(t− t′)]Y dW (25)

This integral form does not immediately give us any information. Even though
we cannot expect a Gaussian distribution for the PDF of Y (t), which means we
have to know higher order moments, the correlation could give us some impor-
tant information regarding the signal transfer between adjacent maps. From the
above integral equation, we can construct the covariance matrix. Multiplying
the transpose of Y (t) and taking ensemble average, the covariance matrix can
be represented as

< Y (t)Y (t)T > = Qexp(εµ0Dt)Q
T < Y (0)Y T (0) > Qexp(εµ0Dt)Q

T

+ σ2Q(I + εD)

∫ t

0

∫ t

0

exp(εµ0D(t− t′)QT < (Y dW )(Y dW )T > Qexp[εµ0D(t− t′)](I + εD)QT .

(26)
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To simplify equation (26), we need information about the initial covariance
structure. We seek the average behavior of signal transfer and hence it is rea-
sonable to initially assume that each map is uncorrelated with any other map
and the second moment of each map is identical. Mathematically, the assump-
tion is

< y2(0) >=< y21(0) >=< y22(0) >= ...... =< y2n(0) >

< yi(0)yj(0) >= 0, i 6= j

and dW represents a Wiener process which is independent at each time step
and the noise input at each map is independent from other maps. Based on
these facts and dW ∼ N(0,

√
dt), we can deduce < dWidWj >= δijdt. A more

rigorous explanation is given by Ito-calculus as∫ t

0

∫ t

0

f < (Y dW )(Y dW )T > g =

∫ t

0

fgS,

where f and g are integrable functions and

S =


< y21 > dt

< y22 > dt
. . .

< y2n > dt

 .

There is no distinction between any of n maps because each map starts from
the same condition. The statistical structure of all maps must be the same in
time, which leads to

< y21 >=< y22 > = ...... = < y2n > .

Therefore, the integral equation for covariance can be simplified as

< Y (t)Y T (t) > = Qexp(2εµ0Dt)Q
T

+ σ2Q(I + εD)

∫ t

0

exp(2εµ0Dt)(I + εD)QT < y2 > dt′. (27)

A technical difficulty exists for handling the n×n matrix in this equation. The
simplest case is of 3 identical maps that are connected locally. Even in the
3-map case, we expect that the most important aspect for signal transference
remains. For 3-map case we have

A =

−1 1
2

1
2

1
2 −1 1

2
1
2

1
2 −1

 ,

Q =

− 1√
6

− 1√
2

1√
3

2√
6

0 1√
3

− 1√
6

1√
2

1√
3

 , and D =

−3
2 0 0
0 − 3

2 0
0 0 0

 ,
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If we insert Q and D into the integral equation, we find the integral equation
for < y2 > as

< y2 > =

[
1

3
+

2

3
exp(−3εµ0t)

]
< Y 2(0) >

+ σ2

∫ t

0

[
1

3
+

2

3
(1− 3

2
ε)2exp(−3εµ0[t− t′])

]
< y2 > dt′. (28)

Differentiating with respect to t, we get

d

dt
< y2 >= −2εµ0exp(−3εµ0t) < y2(0) > +σ2(

1

3
+

2

3
(1− 3

2
ε)2) < y2 >

− 2εµ0σ
2(1− 3

2
ε)2
∫ t

0

exp(−3εµ0(t− t′)) < y2(t′) > dt′, (29)

and multiplying both sides by exp(3εµ0t) and letting q =< y2 > exp(3εµ0t), we
find

dq

dt
− 3εµ0q = −2εµ0 < y2(0) > +σ2

[
1

3
+

2

3
(1− 3

2
ε)2
]
q

− 2εµ0σ
2(1− 3

2
ε)2
∫ t

0

qdt′. (30)

Differentiating again with respect to t on both sides, we get

d2q

dt2
− (3εµ0 +

1

3
σ2 +

2

3
σ2(1− 3

2
)2)

dq

dt
+ 2εσ2µ0(1−

3

2
ε)2q = 0. (31)

The initial conditions are determined in the previous steps as

q(0) =< y2(0) >, q′(0) = (εµ0 + σ2 +
2

3
σ2(1− 3

2
ε)2) < y2(0) > .

A solution can be easily constructed for the second order differential equation
with constant coefficients.

< y2 >= C1e
(λ1−3εµ0)t + C2e

(λ2−3εµ0)t, (32)

where

λ1,2 =
1

2
(3εµ0 +

1

3
σ2 +

2

3
σ2(1− 3

2
ε)2)

±
√

1

4
(3εµ0 +

1

3
σ2 +

2

3
(1− 3

2
ε)2)2 − 2εσ2µ0(1−

3

2
ε)2 (33)

and

C1 =
< y2(0) >

λ1 − λ2
((εµ0 +

1

3
σ2 +

2

3
σ2(1− 3

2
ε)2)− λ2),

C2 =
< y2(0) >

λ1 − λ2
(λ1 − (εµ0 +

1

3
σ2 +

2

3
σ2(1− 3

2
ε)2)). (34)

The coefficients, C1 and C2, are calculated from the two initial conditions. For
t� 0, < y2 > is governed by C1e

(λ1−3εµ0)t and hence we can write

< y2 > ∼ C1e
(λ1−3εµ0)t, (35)
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and we can compare this result with the single map. For the single map, the
stochastic solution is x(0)e(µ0− 1

2σ
2)t+σW . Because W follows N(0, t), it is pos-

sible to find the < x2 >= x2(0)e(µ0+σ2)t. Figure 13 shows the comparison of
< y2 > between the single map and the locally connected map. The x-axis rep-
resents the interaction coefficient ε and the y-axis is the difference of exponential
exponent between the two cases. In this figure, λ1 − 3εµ0 − σ2 is negative for
all interaction coefficients. The decrease of growth rate compared with that of
the single map is caused by the local connection which suppresses the growth
of the second moment of each map in the locally connected maps.
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Figure 13: comparison of < y2 > between the single map and the locally con-
nected maps

This result seems not to support the generation of more on stages in locally
connected maps. A more revealing aspect may be the correlation between two
adjacent maps. From the equation (12), we can find an equation for < y1y2 >.

< y1y2 > = (
1

3
− 1

3
e−3εµ0t) < y2(0) >

+ σ2

∫ t

0

(
1

3
− 1

3
(1− 3

2
ε)2e−3εµ0(t−t′)) < y2 > dt′ (36)

In this equation < y1y2 > is determined by < y2 > which we calculated previ-
ously. Before finding the value of the integral, we discuss its structure. Accord-
ing to our previous calculation < y2 > is an exponentially increasing function
with time. The correlation < y1y2 > is the time integral of < y2 >. Therefore,
we can expect that < y1y2 > increases exponentially with time. If we only care
about the leading order form of the solution, we can approximate < y1y2 > as

< y1y2 >∼
1

3
C1

[
1

λ1 − 3εµ0
−

(1− 3
2ε)

2

λ1

]
e(λ1−3εµ0)t. (37)

Obviously, the coefficients multiplying the exponential are positive. So, the
correlation between two adjacent maps increases exponentially.

Returning to our linearized coupled equations, we can apply the above results
to interpret each term in the equation (22). First, our underlying assumption
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is that the system is unstable such that the signal, yk, increases on average.
Temporarily, yk can experience a sudden or steady decrease but yk eventually
increases if we consider long time periods. We found from the above analysis
that the yk are positively correlated with the yk+1 and the yk−1. In equation
(22), the term −εµ0yk decreases the growth rate of < y2k > compared with that
of a single model. The term εµ0(yk+1 + yk−1)/2 has the most important role in
this locally connected system due to the fact that yk+1 and yk−1 are positively
correlated with yk. If yk starts to move away from the fixed point (yk = 0), it
provides positively correlated signals to yk. More specifically, if yk is negative,
this term provides negative values for yk at the next time step. If yk is positive,
the opposite sequence occurs. This term drives yk away from the fixed point.
When we consider other terms (1 − ε)σξkyk + εσ(ξk+1yk+1 + ξk−1yk−1)/2, we
must recall that yk, yk+1 and yk−1 are positively correlated, and ξk+1, ξk and
ξk−1 are independent Gaussian white noise terms. The sum of these noisy terms
is negligible compared with the other terms. As a result, local connection sets
up the condition for the positive correlation between adjacent systems, which
provides the positively correlated signals to one specific map.

Our calculation in the context of a linearized local connection gives a picture
of how the signals among adjacent maps evolve and transfer during a long time
period of the off stage. Under unstable conditions, adjacent maps together have
the tendency to escape from the fixed point. This process is rapidly accelerated
due to the transfer of positively correlated signals from one specific map to
adjacent maps. This mechanism can explain the generation of more on stages
when we increase the coupling coefficient ε.

5 Conclusion

The Ricker Map which is represented as Nt+1 = Nte
rt(1−Nt) has a fixed point

at Nt = 1.0. The fixed point is stable or unstable depending on the value
of rt relative to 2.0. If rt is driven by Gaussian white noise near rt = 2.0,
on-off intermittency is generated. The on-off intermittency in the Ricker Map
has characteristics consistent with those discussed in previous work. The power
spectrum for on-off intermittency shows a clear slope in log-log scale plots. Most
importantly, the probability density function φ for the duration of the off stages
in the Ricker Map is also proportional to φ−3/2. This consistency leads us to a
more realistic consideration of the Ricker Map.

The Ricker Map is used for the evolution of the population of one species
at one generation. A realistic environment in this species is not isolated from
other similar systems. Therefore, on-off intermittency in the Ricker Map is
investigated under a locally connected situation. That mimics the possible in-
teraction among neighboring species under the same environmental conditions.
Even though the exact form of interaction is not shown, as a first step, we use
a linear coupling with adjacent maps based on the coupling coefficient ε. The
magnitude of ε represents the intensity of the interaction. According to numer-
ical simulations, the statistics of on-off intermittency are changed relative to
a single map that has the same parameters. Moreover, the stability condition
changes due to local coupling. Within some range of σ, the locally connected
Ricker maps become unstable even though the single map is stable under the
same parameters. The mechanism for explaining the change caused by the lo-
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cal coupling must be strongly related to the evolution and transfer of signals
between adjacent maps.

Signal evolution and transfer of information in a locally coupled system was
considered theoretically using a time-continuous model similar to the Ricker
Map. This continuous model enables us to use stochastic calculus to make
progress. We found that the signal in a specific map belonging to the locally
coupled system is positively correlated with the signal in adjacent maps. The
positively correlated signals that come from adjacent maps are added to the sig-
nal in the map for the next time step. Under unstable conditions, this feedback
due to correlations with adjacent maps causes the signal to accelerate away from
the fixed point, which explains the change of statistics of on-off intermittency
under the local coupling.
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